| Signature of Invigilators | | Roll No. | |---------------------------|------------------|------------------------------------| | 1 MATH | EMATICAL SCIE | NCES (In figures as in Admit Card) | | 2 | Paper II | Roll No | | | | | | J0102 | | (In words) | | | Name of the Area | s / Section (if any) | | Time Allowed: 75 Minutes] | | [Maximum Marks: 100 | | | | | #### Instructions for the Candidates - 1. Write your Roll Number in the space provided on the top of this page. - 2. This paper consists of Seventy (70) multiple choice type questions, out of which any (50) are to be attempted. - 3. Each item has upto four alternative responses marked (A), (B), (C) and (D). The answer should be a capital letter for the selected option. The answer letter A question should entirely be contained within the corresponding square. Correct method A Wrong Method A or A - 4. Your responses to the items for this paper are to be indicated on the Answer sheet under paper II only. - 5. Read instructions given inside carefully. - 6. One sheet is attached at the end of the booklet for rough work. - 7. You should return the test booklet to the invigilator at the end of paper and should not carry any paper with you outside the examination hall. ### પરીક્ષાર્થીઓ માટેની સૂચનાઓ : - ૧. આ પાનાની ટોચમાં દર્શાવેલી જગ્યામાં તમારો રોલ નંબર લખો. - ૨. આ પ્રશ્નપત્રમાં સીત્તે૨ (70) બહુલક્ષી ઉત્તરો ઘરાવતા પ્રશ્નો આપેલા છે.જેમાંથી કોઈપણ <mark>પચાસ (50)</mark> ના ઉત્તરો આપવાના ૨હેશે. - 3. પ્રત્યેક પ્રશ્ન વધૂમાં વધૂ ચાર બહુવૈકલ્પિક ઉત્તરો ધરાવે છે. જે (A), (B), (C) અને (D) વકે દર્શાવવામાં આવ્યા છે. પ્રશ્નનો ઉત્તર કેપીટલ સંજ્ઞા વકે આપવાનો રહેશે. ઉત્તરની સંજ્ઞા આપેલ ખાનામાં બરાબર સમાઈ જાય તે રીતે લખવાની રહેશે. ખરી રીત : $oldsymbol{A}$ ખોટી રીત : $oldsymbol{A}$, $oldsymbol{A}$ - ૪. આ પ્રશ્નપત્રના જવાબ આપેલ Answer Sheet ના Paper II વિભાગની નીચે આપેલ ખાનાઓમાં આપવાના ૨હેશે. - ૫. અંદર આપેલ સૂચનાઓ કાળજીપૂર્વક વાંચો. - આ બુકલેટની પાછળ આપેલું પાનું ૨ફ કામ માટે છે. - ૭. પરીક્ષા સમય પૂરો થઈ ગયા પછી આ બુકલેટ જે તે નીરીક્ષકને સોપી દેવી. કોઈપણ પેપર પરીક્ષા રૂમની બહાર લઈ જવું નહી. | | . <u></u> | | er. | | | |---|-----------|--|-----|--|--| | | | | | | | | • | 3 | ere en la companya de la companya d | | | | | | | | | | * | | | | | | | • 4 | | | | | | | ************************************** | | | | | | : | • | | | | | | | | | | • | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | • | | | | .*
.* | | | | | | | | | | | | | | | | | | | # | | | | | | | | - | • | | | | | | | | Parameter State | · · · · · · · · · · · · · · · · · · · | · | | | | | | | | | | | | | | | | | • | | | | ermone in the second of se | | | | A STATE OF STATE | | | | | | | | | | • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | ** | | | | · · · · · · · · · · · · · · · · · · · | | | | | | • | | | | | | 4 | The second secon | | | | | | | | e de la companya l | | | | | | | | | | | | | | :
• | • | | | | | | $(x,y) = \left(\frac{1}{2} \left(\frac{y}{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}$ | | | • | • | | | | | | | | | | | | # MATHEMATICAL SCIENCES PAPER II - Note:—(i) This paper contains seventy (70) multiple choice questions, each carrying two (2) marks. - (ii) Attempt any fifty (50) questions. Incase more questions are attempted, only first fifty (50) attempted questions will be assessed. - 1. Let $f(x) = x \ (x \in \mathbf{R}), \ g(x) = x^2 \ (x \in \mathbf{R}).$ Then: - (A) both f and g are uniformly continuous on R - (B) f is uniformly continuous on \mathbf{R} but g is not - (C) g is uniformly continuous on R but f is not - (D) neither f nor g is uniformly continuous on R - 2. Let $\{f_n\}$ be a sequence of real valued functions defined and continuous on [0, 1]. If $\{f_n\}$ converges uniformly on [0, 1] to f, then: - (A) f is continuous on [0, 1] but not Riemann integrable on [0, 1] - (B) f is Riemann integrable on [0, 1], but not continuous on [0, 1] - (C) f is neither continuous nor Riemann integrable on [0, 1] - (D) f is both continuous and Riemann integrable on [0, 1] - 3. Let f and g be monotonically increasing on [a, b]. Then f-g is : - (A) monotonically increasing on [a, b] - (B) continuous on [a, b] - (C) discontinuous at atmost countable number of points in [a, b] - (D) continuous at atmost countable number of points in [a, b] - 4. The series $\sum_{n=0}^{\infty} \frac{z^n}{n!}$: - (A) converges for |z| < 1 - (B) converges for |z| < n! - (C) converges for all z - (D) converges only if z = 0 | 5. | The Laurentz | series expansion | of $f(z)$ | = | $\frac{1}{z^2 - 3z + 1}$ | $\frac{1}{2}$ | in powers of (z | – 1) | |----|--------------|------------------|-----------|----
--|---------------|-----------------|--------------| | | is: | | | .5 | and the second s | | | | (A) $$\sum_{n=-1}^{\infty} -(z-1)^n$$ (B) $$\sum_{n=-2}^{\infty} - (z-1)^n$$ (C) $$\sum_{n=0}^{\infty} (z-1)^n$$ (D) $$\sum_{n=0}^{\infty} \frac{1}{(z-1)^n}$$ - 6. Let v_1, v_2, \ldots, v_m be m linearly independent column vectors in \mathbb{R}^n , then the row rank of the $n \times m$ matrix $A = [v_1, v_2, \ldots, v_m]$ is: - (A) n - (B) m - (C) mn - (D) $\max(m, n)$ - 7. The maximum number of linearly independent characteristic vectors (eigen vectors) of the matrix $$\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$ is: - (A) 1 - (B) 0 - (C) 2 - $(\mathbf{D}) = 3$ - 8. A square matrix A is invertible if and only if: - (A) $\det A > 0$ (B) $\det A < 0$ (C) $\det A = \pm 1$ (D) $\det A \neq 0$ | 9. | Let \mathbf{Q}_1 and \mathbf{Q}_2 be two positive definite quadratic forms. Then the following | |-----|--| | | must also be a positive definite quadratic form: | | | $(A) Q_1 Q_2 \qquad (B) Q_1 - Q_2$ | | | (C) $Q_1 + Q_2$ (D) Q_1/Q_2 | | 10. | If $P(E) = 1/2$ and $P(F) = 1/2$, then: | | | (A) E and F are mutually exclusive events | | | (B) E and F are exhaustive events | | | (C) E and F are independent events | | | (D) E and F are not necessarily mutually exclusive events | | 11. | If E and F are independent events, then how many of the following statements | | | are true? | | | $S_1: E^C$ and F are independent | | | S_2 : E and F^C are independent | | • | $S_3^{}$: E^C and F^C are independent | | • | (A) 0 (B) 1 (C) 2 (D) 3 | | 12. | Let X have binomial distribution with parameters n and p . Then the dis- | | | tribution of X has a unique mode if: | | | (A) np is an integer | | | (B) $(n + 1)p$ is an integer | | | (C) $(n-1)p$ is an integer | | | (D) $(n-1)p$ and np are both integers | | 13. | For two events E and F, which of the following is false? | | | $(A) P(E \cup F) \leq P(E) + P(F)$ | | | (B) $P(E \cap F) \leq P(E F)$ | | | (C) $P(E \cap F) > P(E F)$ | | | (D) $P(E \cup F) = P(E) + P(F \cap E^{C})$ | | Mat | th. Sc. II 5 P.T.O. | | | | - 14. A subset is selected at random from {1, 2,, 10}. The probability that it contains the elements 2 and 8 is: - (A) 1/4 - (B) 1/2 - (C) 1/5 - (D) 1/6 - 15. Two fair dice are thrown simultaneously and the numbers that turned up are denoted by X and Y. Then: - (A) P(X + Y is an even number) < P(X + Y is an odd number) - (B) P(X + Y is an even number) > P(X + Y is an odd number) - (C) P(X + Y is an even number) = P(X + Y is an odd number) - (D) P(X = Y) = 1 - 16. Let X be standard normal with p.d.f. f and Y be normal with mean zero, variance 4 and p.d.f. g. Then f and g: - (A) do not intersect - (B) intersect at 2 points - (C) intersect at 4 points - (D) intersect at one point only - 17. Let E_1 and E_2 be exhaustive and mutually exclusive events with $P(E_1) P(E_2) > 0$. Then for any event F, with P(F) > 0, the correct expression is: (A) $$P(E_2/F) = \frac{P(F/E_1) P(E_1)}{\sum_{i=1}^{2} P(F/E_i) P(E_i)}$$ (B) $$P(E_2/F) = 1 - \frac{P(F/E_1) P(E_1)}{\sum_{i=1}^{2} P(F/E_i) P(E_i)}$$ (C) $$P(F/E_2) = 1 - \frac{P(E_2/F) P(F)}{\sum_{i=1}^{2} P(E_i/F) P(F)}$$ (D) $$P(F/E_2) = \frac{P(E_2/F) P(F)}{\sum_{i=1}^{2} P(E_i/F) P(F)}$$ - A system Ax = b, $A : m \times n$ has no unique solution, if : - (A) A is non-singular - (B) A is singular and b is independent relative to the Vectors of A - (C) A is singular - (D) A is singular and b is dependent relative to the vectors of A - For some maximization l.p.p. in rth iteration of the simplex procedure $z_j - c_j \ge 0$ for all non-basic variables with $z_j - c_j = 0$ for at least one nonbasic variable. Then the l.p.p. has: - (A) a unique maximal solution - alternate optimal solution **(B)** - (C) no feasible solution - an unbounded solution **(D)** - If outgoing variable decision is not according to the minimum replacement 20. ratio criterion of the simplex method then the next basic solution will be: - (A) inferior (non-improving) - (B) infeasible - (C) inferior and infeasible - (D) also feasible - Let E be an infinite subset of R. Which of the following is true? 21. - (A) If E is uncountable, E is unbounded - (B) If E is unbounded, E is uncountable - (C) If E is unbounded and uncountable, E = R - (D) If E is the range of a non-constant continuous function on [0, 1], then E is uncountable - For the series 22. $$\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \dots$$ let $$\liminf_{n\to\infty} \frac{a_{n+1}}{a_n} = \alpha$$ and $\limsup_{n\to\infty} \frac{a_{n+1}}{a_n} = \beta$. Then: (A) $$\alpha = 0$$, $\beta = \infty$ $$(\mathbf{B}) \quad \alpha = \beta = 0$$ (C) $$\alpha = \beta = \infty$$ (B) $$\alpha = \beta = 0$$ (D) $0 < \alpha < \beta < \infty$ | | · · | | |-----|--|--| | 23. | Let $\{a_n\}$ and $\{b_n\}$ be sequences of $\{b_n\}$ is convergent. Let $c_n = a_n + a_n$ | real numbers such that $\{a_n\}$ is Cauchy and b_n . Then $\{c_n\}$ is : | | | (A) convergent | (B) not Cauchy | | | (C) Cauchy, but not convergent | (D) neither Cauchy nor convergent | | 24. | Let R, Q, Z denote the set of real
the set of integers respectively. | numbers, the set of rational numbers and Then: | | | (A) Q is ordered, but not a field | | | | (B) Z is a field, but not ordered | | | | (C) R is an ordered field but n | ot complete | | ٠ | (D) R is a complete ordered field | d | | 25. | Let C_1 be the disc $ z < 5/4$ as $f(z) = z^2 - 3z + 2$ is conformal | and C_2 be the disc $ z < 2$. The function in : | | * | (A) both C ₁ and C ₂ | (B) C ₁ but not C ₂ | | | (C) C ₂ but not C ₁ | (D) neither C_1 nor C_2 | | 26. | The cross-ratio (z_1, z_2, z_3, z_4) of fand only if the four points are | our points in the complex plane is real if | | | (A) the corners of a square | (B) on a circle | | | (C) on a straight line | (D) on a circle or on a straight line | | 27. | If C is the circle $ z = 10$, the | value of | | | $\int_{\mathcal{C}} \frac{dz}{z^2 - 5z + }$ | $\frac{1}{4}$: | | , | (A) does not exist | (B) is 0 | | | (C) is $\frac{2}{3}\pi i$ | (D) is $-\frac{2}{3}\pi i$ | | | | | 28. The function $$f(z) = \frac{\sin 1/z}{z^2 + 11z + 13}$$ has: - (A) no singularities - (B) only poles - (C) only an essential singularity - (D) both an essential singularity and poles | 29. | For elements a and b of a group, $a^{-1}b$ is an element of order 2. What is the order of ba^{-1} ? | |-------------|---| | | (A) 2 | | | (B) Products of the orders of a and b | | | (C) l.c.m. of the orders of a and b | | | (D) Any number | | 30. | Let G = $\{f_{a,b} \mid a, b \text{ real}, a \neq 0\}$, where $f_{a,b}(x) = ax + b$ for real x. Consider | | | the group G under the composition of mappings. What is the inverse of | | | $f_{2,4}$? | | • | (A) $f_{4,2}$ (B) $f_{2,1/4}$ (C) $f_{1/4,2}$ (D) $f_{1/2,(-2)}$ | | 31. | Let G be the multiplicative group of non-zero complex numbers and H the subgroup of complex numbers with modulus 1. Which of the following is isomorphic to G/H? | | | (A) G | | | (B) H | | | (C) The additive group of all real numbers | | ` | (D) The multiplicative group of all positive real numbers | | 32 . | The subgroup of S ₃ , which is cyclic of order 3, is generated by: | | | (A) (12) (B) (23) (C) (13) (D) (132) | | 33. | Let $R[x]$ be the ring of all polynomials with real coefficients. Which of the following subrings of $R[x]$ is not an ideal of $R[x]$? | | | (A) $\{f(x) f(0) = 0\}$ (B)
$\{f(x) f(0) = 0 = f'(0)\}$ (C) $\{f(x) f(1) = 0 = f(3)\}$ (D) $\{f(x) \text{Degree of } f = 0\}$ | | 34. | Let W_1 and W_2 be subspaces of a vector space V such that $W_1 \cap W_2 = (0)$.
Let $w_1 \in W_1$ and $w_1 \in W_2$ be non-zero vectors. Which of the following is true? | | | (A) $\{w_1, w_2\}$ and $\{w_1 + w_2, w_1 - w_2\}$ are both linearly independent sets. | | | (B) $\{w_1, w_2\}$ is linearly independent but $\{w_1 + w_2, w_1 - w_2\}$ is a linearly dependent set. | | | (C) $\{w_1, w_2\}$ is a linearly dependent set while $\{w_1 + w_2, w_1 - w_2\}$ is linearly independent. | | | (D) $\{w_1, w_2\}$ and $\{w_1 + w_2, w_1 - w_2\}$ are both linearly dependent sets. | | Matl | h. Sc. II 9 P.T.O. | Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by the matrix $$egin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 1 \end{bmatrix}$$ Which of the following is a true statement? (A) T is one-one and onto (B) T is onto but not one-one (C) T is one-one but not onto T is neither one-one nor onto **(D)** Let $T: V \to W$ be a linear map between finite dimensional vector spaces 36. V and W. Let $T': W' \to V'$ be the dual map. Which of the following is a true statement? (A) T is surjective if and only if T' is injective (B) T is surjective if and only if T' is surjective (C) T is injective if and only if T is injective (D) Injectivity or surjectivity of T and T are unrelated Let V be an inner product space and $P:V\to V$ be a linear map. Then P is an orthogonal projection if and only if: (A) $P^2 = -P$ and $P^* = P$ (B) $P^2 = P$ and $P^* = -P$ (C) $P^2 = P$ and $(I - P)^2 = I - P$ (D) $P^2 = P$ and $P^* = P$ [Here P* denotes the adjoint of P.] The linear map $T: \mathbf{R}^3 \to \mathbf{R}^3$ described by 38. $$T(\hat{i}) = \hat{j} + \hat{k}, T(\hat{j}) = \hat{k} + \hat{i}, T(\hat{k}) = \hat{i} + \hat{j}$$ has the following matrix representation: $$\text{(A)} \quad \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ \end{bmatrix}$$ $$(B) \quad \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$ $$\begin{array}{cccc} (C) & \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \end{array}$$ (D) $$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1_2 \end{bmatrix}$$ 39. The initial value problem $$x\frac{dy}{dx} = y + 1, y(0) = -1$$ has: - (A) a unique solution - (B) more than one but finitely many solutions - (C) infinitely many solutions - (D) no solution - 40. For the differential equation $$\frac{dx}{dt} + \beta^2 x = 0,$$ where β is a non-zero real constant : - (A) all solutions become unbounded as $t \to \infty$, when $\beta < 0$ - (B) all solutions, with one exception, become unbounded as $t \to \infty$, when $\beta < 0$ - (C) all solutions, with one exception, approach zero as $t \to \infty$ when $\beta > 0$ - (D) all solutions approach zero as $t \to \infty$ - 41. Let $y_1(x)$ and $y_2(x)$ be two solutions of $y'' + 3x^2y' + e^{-x^2}y = 0$, satisfying $y_1(0) = 0$, $y'_1(0) = -1$, $y_2(0) = 1$, $y'_2(0) = -1$. Then the Wronskian W (y_1, y_2) (x) of $y_1(x)$ and $y_2(x)$ at x = 1 is : - (A) e (B) e^{-1} (C) -e (D) $-e^{-1}$ - 42. The initial value problem $y'' + x^2y' + e^{-x}y = \sin x$, 0 < x < 1, y(0) = 0, y(0) = 1 has: - (A) a unique solution on 0 < x < 1 - (B) more than one, but finitely many solutions on 0 < x < 1 - (C) infinitely many solutions on 0 < x < 1 - (D) no solution on 0 < x < 1 43. The characteristic curves of the partial differential equation $$\frac{\partial z}{\partial y} + y \frac{\partial z}{\partial x} = \frac{z}{y}, \quad y \neq 0$$ are : - (A) straight lines along which z varies proportional to x - (B) circles along which z remains constant - (C) parabolas along which z varies proportional to y - (D) exponential curves along which z satisfies an ordinary differential equation - 44. If u(x, y) satisfies the partial differential equation $$\frac{\partial^2 u}{\partial r^2} - u = 0,$$ and A, B are arbitrary functions of a single variable, either x or y, then: (A) $$u = A(x) e^{x} + B(y) e^{-x}$$ **(B)** $$u = A(y) e^x + B(x) e^{-x}$$ (C) $$u = A(x) e^x + B(x) e^{-x}$$ (D) $$u = A(y) e^x + B(y) e^{-x}$$ - 45. In the theory of least square method of estimating the unknown parameters of the model, we minimize the sum of: - (A) squares of observations - (B) observations - (C) deviations of observations from their expected values - (D) square of the deviations of observations from their expected values - 46. If $B_{YX} = 0.4$ and $B_{XY} = 0.16$ are the regression coefficients of Y on X and X on Y respectively, then the correlation coefficient between X and Y is: - (A) 0.08 (B) $$-0.08$$ (C) 0.0064 - (D) None of these - 47. If the joint distribution of X and Y is given by the p.d.f. f(x, y), conditional expectation of Y given X = x is: (A) $$\int \frac{y f(x, y) dy}{\int f(x, y) dy}$$ (B) $$\int \frac{y f(x, y) dy}{\int f(x, y) dx}$$ (C) $$\int \frac{y f(x, y) dy}{P(X = x)}$$ (D) $$\int y f(x, y) dy$$ 48. Let X be absolutely continuous with p.d.f. f(x). Then Y = X^2 has density: (A) $$f(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}}$$ (B) $$\left[f\left(\sqrt{y}\right) + f\left(-\sqrt{y}\right) \right] \frac{1}{2\sqrt{y}}$$ (C) $$\left[f\left(\sqrt{y}\right) - f\left(-\sqrt{y}\right) \right] \frac{1}{2\sqrt{y}}$$ (D) $$f(-\sqrt{y}) \frac{1}{2\sqrt{y}}$$ 49. The characteristic function of uniform distribution over $(-\alpha, \alpha)$ is : (A) $$\frac{1}{\alpha t} \sin(t\alpha)$$ (B) $$\frac{1}{\alpha t} \cos(t\alpha)$$ (C) $$\alpha t \sin(t\alpha)$$ (D) $$\alpha t \cos(t\alpha)$$ 50. If X_1, X_2, \ldots, X_n are i.i.d. r.v.s. with $EX_1 = \mu$ and $V(X_1) = \sigma^2$, then which of the following is a consequence of Chebyshev's inequality? (A) $$P[|\overline{X} - \mu| > c\sigma^2] \le 1/c^2$$ (B) $$P[|\overline{X} - \mu| > c\sigma] \le 1/c^2$$ (C) $$P[|\overline{X} - \mu| < c\sigma] \le 1/c^2$$ (D) $$P[|\overline{X} - \mu| > c\sigma] > 1 - 1/c^2$$ 51. Let X have a rectangular distribution over $(0, \theta)$. Then: - (A) The variance of X <the mean of X - (B) The variance of X > the mean of X - (C) The variance of X =the mean of X - (D) Nothing can be said about the mean and variance of X in general - 52. If X is a r.v. with E X = variance of X, then: - (A) X is a Poisson r.v. - (B) X is a Uniform r.v. - (C) X is a binomial r.v. - (D) Nothing can be said about the distribution of X - 53. Let X_1, X_2, \ldots, X_n be i.i.d. standard normal r.v.s. Consider: $$Y_1 = \frac{\overline{X}\sqrt{n-1}}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2}}$$ and $Y_2 = \frac{\overline{X}\sqrt{n}}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2}}$. Then: - (A) Both Y_1 and Y_2 are distributed as Student's t with (n-1) d.f. - (B) Both Y_1 and Y_2 are distributed as Student's t with n d.f. - (C) Y_1 is distributed as Student's t with (n-1) d.f. but Y_2 is not distributed as Student's t with n d.f. - (D) Y_2 is distributed as Student's t with (n-1) d.f. but Y_1 is not distributed as Student's t with n d.f. - 54. If X is binomial with variance β and $$P(X = 1) = \alpha P(X = 0)$$ then: (A) $$\mathbf{E} \mathbf{X} = \alpha \boldsymbol{\beta}$$ (B) $$E X = \alpha/\beta$$ (C) $$\mathbf{E} \mathbf{X} = \beta / \alpha$$ (D) E X = $$\sqrt{\alpha\beta}$$ - 55. When a hypothesis H_0 Vs. H_1 is tested, which of the following is the *correct* interpretation? - (A) The smaller the P value, the stronger is the evidence against H_0 provided by the data - (B) The smaller the P value, the stronger is the evidence in favour of H₀ - (C) The larger the P value the stronger is the evidence against H_0 - (D) P value is always given before the test and hence has no relevance for or against \mathbf{H}_0 Math. Sc. II | of p is: (A) 0.6X + 0.2 (B) 0.2X + 0.6 (C) 0.2X + 0.8 (D) 0.8X + 0.2 57. Let T₁ and T₂ be two unbiased estimators of θ, where T₁ is not sufficien but T₂ is sufficient. Let h(T₂) = E(T₁/T₂). Then: (A) h(T₂) is better than T₁ (B) h(T₂) is not better than T₁ (C) h(T₂) is as good as T₁ (D) h(T₂) and T₁ are not comparable 58. Let X₁ and X₂ be i.i.d. standard normal r.v.s. Then T = X₁ is: (A) sufficient (B) complete but not sufficient (C) sufficient but not complete (D) both sufficient and complete 59. Consider the assertions: (a₁) In analysis of two-way classified data it is necessary to have equal number of observations per cell. (a₂) The model will lose orthogonality when the numbers of observations per cell are not equal. (Choose your answer from the following: (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁) (C) (a₁) is true but (a₂) is false (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent randor samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | | |
---|-------------|---| | (A) 0.6X + 0.2 (B) 0.2X + 0.6 (C) 0.2X + 0.8 (D) 0.8X + 0.2 57. Let T₁ and T₂ be two unbiased estimators of θ, where T₁ is not sufficien but T₂ is sufficient. Let h (T₂) = E (T₁/T₂). Then: (A) h (T₂) is better than T₁ (B) h (T₂) is not better than T₁ (C) h (T₂) is as good as T₁ (D) h (T₂) and T₁ are not comparable 58. Let X₁ and X₂ be i.i.d. standard normal r.v.s. Then T = X₁ is: (A) sufficient (B) complete but not sufficient (C) sufficient but not complete (D) both sufficient and complete 59. Consider the assertions: (a₁) In analysis of two-way classified data it is necessary to have equal numbe of observations per cell. (a₂) The model will lose orthogonality when the numbers of observations per cell are not equal. Choose your answer from the following: (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁) (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of (a₁) (C) (a₁) is true but (a₂) is false (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent randor samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | 56. | Let X be an observation from B (n, p) where $p \in [0.2, 0.8]$. Then the MLE | | 57. Let T₁ and T₂ be two unbiased estimators of θ, where T₁ is not sufficien but T₂ is sufficient. Let h(T₂) = E(T₁/T₂). Then: (A) h(T₂) is better than T₁ (B) h(T₂) is not better than T₁ (C) h(T₂) is as good as T₁ (D) h(T₂) and T₁ are not comparable 58. Let X₁ and X₂ be i.i.d. standard normal r.v.s. Then T = X₁ is: (A) sufficient (B) complete but not sufficient (C) sufficient but not complete (D) both sufficient and complete 59. Consider the assertions: (a₁) In analysis of two-way classified data it is necessary to have equal number of observations per cell. (a₂) The model will lose orthogonality when the numbers of observations per cell are not equal. Choose your answer from the following: (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁) (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of (a₁) (C) (a₁) is true but (a₂) is false (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent randor samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test | | | | but T₂ is sufficient. Let h(T₂) = E(T₁/T₂). Then: (A) h(T₂) is better than T₁ (B) h(T₂) is not better than T₁ (C) h(T₂) is as good as T₁ (D) h(T₂) and T₁ are not comparable 58. Let X₁ and X₂ be i.i.d. standard normal r.v.s. Then T = X₁ is: (A) sufficient (B) complete but not sufficient (C) sufficient but not complete (D) both sufficient and complete 59. Consider the assertions: (a₁) In analysis of two-way classified data it is necessary to have equal number of observations per cell. (a₂) The model will lose orthogonality when the numbers of observations per cell are not equal. Choose your answer from the following: (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁) (C) (a₁) is true but (a₂) are correct and (a₂) is not the correct explanation of (a₁) (C) (a₁) is true but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent randor samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test | | (A) $0.6X + 0.2$ (B) $0.2X + 0.6$ (C) $0.2X + 0.8$ (D) $0.8X + 0.2$ | | (B) h (T₂) is not better than T₁ (C) h (T₂) is as good as T₁ (D) h (T₂) and T₁ are not comparable 58. Let X₁ and X₂ be i.i.d. standard normal r.v.s. Then T = X₁ is: (A) sufficient (B) complete but not sufficient (C) sufficient but not complete (D) both sufficient and complete 59. Consider the assertions: (a₁) In analysis of two-way classified data it is necessary to have equal number of observations per cell. (a₂) The model will lose orthogonality when the numbers of observations per cell are not equal. (Choose your answer from the following: (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁) (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of (a₁) (C) (a₁) is true but (a₂) is false (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent randor samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | 57 . | Let T_1 and T_2 be two unbiased estimators of θ , where T_1 is not sufficient but T_2 is sufficient. Let $h(T_2) = E(T_1/T_2)$. Then: | | (C) h (T₂) is as good as T₁ (D) h (T₂) and T₁ are not comparable 58. Let X₁ and X₂ be i.i.d. standard normal r.v.s. Then T = X₁ is : (A) sufficient (B) complete but not sufficient (C) sufficient but not complete (D) both sufficient and complete 59. Consider the assertions : (a₁) In analysis of two-way classified data it is necessary to have equal number of observations per cell. (a₂) The model will lose orthogonality when the numbers of observations per cell are not equal. (Choose your answer from the following : (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁) (C) (a₁) is true but (a₂) are correct and (a₂) is not the correct explanation of (a₁) (C) (a₁) is false but (a₂) is false (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent randor samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown : (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | | (A) $h(T_2)$ is better than T_1 | | (D) h (T₂) and T₁ are not comparable 58. Let X₁ and X₂ be i.i.d. standard normal r.v.s. Then T = X₁ is: (A) sufficient (B) complete but not sufficient (C) sufficient but not complete (D) both sufficient and complete 59. Consider the assertions: (a₁) In analysis of two-way classified data it is necessary to have equal number of observations per cell. (a₂) The model will lose orthogonality when the numbers of observations per cell are not equal. Choose your answer from the following: (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁) (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of
(a₁) (C) (a₁) is true but (a₂) is false (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent randor samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | | (B) $h(T_2)$ is not better than T_1 | | 58. Let X₁ and X₂ be i.i.d. standard normal r.v.s. Then T = X₁ is: (A) sufficient (B) complete but not sufficient (C) sufficient but not complete (D) both sufficient and complete 59. Consider the assertions: (a₁) In analysis of two-way classified data it is necessary to have equal number of observations per cell. (a₂) The model will lose orthogonality when the numbers of observations per cell are not equal. Choose your answer from the following: (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁) (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of (a₁) (C) (a₁) is true but (a₂) is false (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent random samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | | (C) $h(T_2)$ is as good as T_1 | | 58. Let X₁ and X₂ be i.i.d. standard normal r.v.s. Then T = X₁ is: (A) sufficient (B) complete but not sufficient (C) sufficient but not complete (D) both sufficient and complete 59. Consider the assertions: (a₁) In analysis of two-way classified data it is necessary to have equal number of observations per cell. (a₂) The model will lose orthogonality when the numbers of observations per cell are not equal. Choose your answer from the following: (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁) (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of (a₁) (C) (a₁) is true but (a₂) is false (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent random samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | | (D) $h(T_2)$ and T_1 are not comparable | | (C) sufficient but not complete (D) both sufficient and complete 59. Consider the assertions: (a₁) In analysis of two-way classified data it is necessary to have equal number of observations per cell. (a₂) The model will lose orthogonality when the numbers of observations per cell are not equal. Choose your answer from the following: (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁) (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of (a₁) (C) (a₁) is true but (a₂) is false (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent random samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | 58. | | | 59. Consider the assertions: (a₁) In analysis of two-way classified data it is necessary to have equal number of observations per cell. (a₂) The model will lose orthogonality when the numbers of observations per cell are not equal. Choose your answer from the following: (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁). (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of (a₁). (C) (a₁) is true but (a₂) is false. (D) (a₁) is false but (a₂) is true. 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent random samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | | (A) sufficient (B) complete but not sufficient | | (a₁) In analysis of two-way classified data it is necessary to have equal number of observations per cell. (a₂) The model will lose orthogonality when the numbers of observations per cell are not equal. Choose your answer from the following: (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁). (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of (a₁). (C) (a₁) is true but (a₂) is false. (D) (a₁) is false but (a₂) is true. 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent random samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | | (C) sufficient but not complete (D) both sufficient and complete | | of observations per cell. (a₂) The model will lose orthogonality when the numbers of observations per cell are not equal. Choose your answer from the following: (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁). (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of (a₁). (C) (a₁) is true but (a₂) is false. (D) (a₁) is false but (a₂) is true. 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent random samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test | 59 . | Consider the assertions: | | cell are not equal. Choose your answer from the following: (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁) (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of (a₁) (C) (a₁) is true but (a₂) is false (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent random samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | • | (a ₁) In analysis of two-way classified data it is necessary to have equal number of observations per cell. | | (A) Both (a₁) and (a₂) are correct and (a₂) is the correct explanation of (a₁) (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of (a₁) (C) (a₁) is true but (a₂) is false (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent random samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | | (a ₂) The model will lose orthogonality when the numbers of observations per cell are not equal. | | (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of (a₁) (C) (a₁) is true but (a₂) is false (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent random samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | | Choose your answer from the following: | | (B) Both (a₁) and (a₂) are correct and (a₂) is not the correct explanation of (a₁) (C) (a₁) is true but (a₂) is false (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent random samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | | (A) Both (a ₁) and (a ₂) are correct and (a ₂) is the correct explanation of (a ₁) | | (D) (a₁) is false but (a₂) is true 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent random samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown:
(A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | | (B) Both (a ₁) and (a ₂) are correct and (a ₂) is not the correct explanation of | | 60. For testing H₀: μ₁ = μ₂ against H₁: μ₁ ≠ μ₂ based on two independent random samples of size n₁ and n₂ drawn from N (μ₁, σ₁²) and N (μ₂, σ₂²) respectively we use the following test when σ₁² and σ₂² are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | | (C) (a ₁) is true but (a ₂) is false | | samples of size n_1 and n_2 drawn from N (μ_1 , σ_1^2) and N (μ_2 , σ_2^2) respectively we use the following test when σ_1^2 and σ_2^2 are unknown: (A) Student's t test (B) Standard normal deviate test (C) Chi-square test (D) Fisher-Behren test | | (D) (a ₁) is false but (a ₂) is true | | (C) Chi-square test (D) Fisher-Behren test | 60. | samples of size n_1 and n_2 drawn from N (μ_1 , σ_1^2) and N (μ_2 , σ_2^2) respectively, | | | | (A) Student's t test (B) Standard normal deviate test | | Moth So II 15 PT (| | (C) Chi-square test (D) Fisher-Behren test | | | Ma | th Sc II 15 P.T.O. | 61. Patients arrive at a getwell clinic of a Dr. XYZ according to a Poisson process at the rate 20 patients per hour. The waiting room does not accommodate more than 14 patients. Examination time per patient for Dr. XYZ is exponential, with a mean of 8 minutes. The queuing model for the problem is: (A) M/M/3 (B) M/M/3 with finite capacity (C) M/M/1 - (D) M/M/1 with finite capacity - 62. For the M/M/1/FIFO/N model, is usual notations, λ_{eff} (effective arrival rate of the system) is given by : (A) $$\mu \left(L_s - L_q \right)$$ (B) $\mu \left(L_q - L_s \right)$ (C) $\lambda \left(L_s - L_q \right)$ (D) $\lambda \left(L_q - L_s \right)$ - 63. If K is set up cost, R is uniform demand rate, h is holding cost per unit per unit time, a is the cost of a unit then for an EOQ model under the assumption of instantaneous production, the EOQ is: - (A) $\sqrt{\frac{2KR}{h}}$ - (B) $\sqrt{\frac{2KR}{h\left(1-\frac{R}{a}\right)}}$ - (C) $\sqrt{\frac{2KR}{ha}}$ - (D) None of the above - 64. Below given is a transportation problem model: Supply: $a_1 = 10$, $a_2 = 5$, $a_3 = 14$, $a_4 = 16$ Demand: $b_1 = 10$, $b_2 = 13$, $b_3 = 12$, $b_4 = 4$, $b_5 = 3$ To balance it we need to add: - (A) a dummy source - (B) a dummy destination - (C) both a dummy source and a dummy destination - (D) neither a dummy source nor a dummy destination 65. In a cost minimization Assignment Problem (A.P.) if p_i and q_j represent *i*th row minima and *j*th column minima respectively then the minimum cost of the A.P. is: (A) $$\sum_i p_i + \sum_j q_j$$ (B) more than $$\sum_{i} p_i + \sum_{j} q_j$$ (C) less than $$\sum_{i} p_i + \sum_{j} q_j$$ (D) $$\sum_{i} p_i - \sum_{j} q_j$$ 66. Consider the following 2×4 games. The pay off for player A is : Player B | | | B ₁ | $\mathbf{B_2}$ | B_3 | B ₄ | |----------|----------------|----------------|----------------|-------|----------------| | D1 A | A ₁ | 2 | 2 | 3 | -1 | | Player A | A_2 | 4 | 3 | 2 | 6 | When solved graphically, the optimum solution for player A is given by: - (A) maximum of upper envelop - (B) maximum of lower envelop - (C) minimax of upper envelop - (D) maximin of lower envelop 67. The estimator of population mean based on a simple random sample allowing repetition of units is: - (A) always finitely consistent - (B) always finitely inconsistent - (C) finitely consistent depending on the nature of population - (D) finitely consistent only if they are unbiased - 68. Let \bar{y}_{sy} be the mean of a systematic sample of size n and \bar{y}_{SRS} be the mean of a SRS sample of size n, then: - (A) $V(\bar{y}_{sv}) < V(\bar{y}_{SRS})$ - (B) $V(\bar{y}_{sv}) > V(\bar{y}_{SRS})$ - (C) $V(\overline{y}_{sy}) = V(\overline{y}_{SRS})$ - (D) $V(\bar{y}_{sy}) < V(\bar{y}_{SRS})$ if intraclass correlation coefficient is negative - 69. If C-matrix of an RBD with b blocks and r treatments is $x I_v + y J_{vv}$, where I_v is $v \times v$ identity matrix and J_{vv} is $v \times v$ matrix of unities, then x and y are given by: - (A) x = v, y = r/v - (B) x = v, y = v/r - (C) x = b, y = -b/v - (D) x = b, y = b/v - 70. Confounding NPK in a 2³ experiment, the layout in a single replication is as follows: - $B_1: (1) pk nk np$ - $\mathbf{B}_2: n \qquad \qquad k \qquad npk \qquad p$ Here the contrast carried by NPK is given by: - $(A) B_1 B_2$ - $(B) B_1 + B_2$ - (C) $B_2 B_1$ - (D) None of the above ### **ROUGH WORK** ## **ROUGH WORK** SEAL